Автотрофы в биологии — определение и примеры автотрофных организмов

Иногда понятия «автотрофы» и «продуценты», а также «гетеротрофы» и «консументы» ошибочно отождествляют, однако они не всегда совпадают. Например, синезеленые (Cyanea) способны и сами производить органическое вещество с использованием фотосинтеза, и потреблять его в готовом виде, причём разлагая до неорганических веществ. Следовательно, они являются продуцентами и редуцентами одновременно.[1]

Описание автотрофов

Автотрофы — организмы, которые синтезируют из неорганических соединений органические. Другими словами, они получают необходимые питательные компоненты из окружающей среды. А также у них имеются следующие особенности:

  1. Они поглощают солнечную энергию.
  2. Способны выделять кислород на свету.
  3. Потребляют углекислый газ.

Организмы, являющиеся представителями этой группы, играют важную роль в природе.

Описание автотрофов

Они выполняют функцию первичных продуцентов — гетеротрофы используют синтезируемые ими органические компоненты для поддержания своей жизнедеятельности.

Нельзя недооценивать значение автотрофов в экосистеме и пищевой цепочке мира.

Бактерии и растения, относящиеся к этой группе, трансформируют солнечную энергию в молекулярную. Подобный механизм называется «первичной продукцией».

Хемосинтез – уникальный процесс питания бактерий

  • История открытия хемосинтеза
  • Хемосинтез и фотосинтез: сходства и различия
  • Энергия хемосинтеза
  • Хемосинтез – уникальный процесс питания бактерий
  • Значение хемосинтеза в природе
  • Реакции хемосинтеза
  • Хемосинтез, видео
  • Процесс хемосинтеза в биологии представляет собой в некотором смысле уникальное явление, ведь это необычный тип питания бактерий, основанный на усвоении углекислого газа СО2 благодаря окислению неорганических соединений. Причем что интересно, по мнению ученых, хемосинтез это древнейший тип автотрофного питания (такого питания, когда организм сам синтезирует органические вещества из неорганических), который мог появиться даже раньше нежели фотосинтез.

    История открытия хемосинтеза

    Хемосинтез – уникальный процесс питания бактерий

    Как биологическое явление хемосинтез бактерий был открыт русским биологом С. Н. Виноградским в 1888 году. Ученый доказал способность некоторых бактерий выделять углеводы используя химическую энергию. Им же был выделен ряд особых хемосинтизирующих бактерий, среди которых наиболее заметными являются серобактерии, железобактерии и нитрифицирующие бактерии.

    Хемосинтез и фотосинтез: сходства и различия

    Давайте теперь разберем в чем сходство хемосинтеза и фотосинтеза, а в чем различия между ними.

    Сходство:

    • Как хемосинтез, так и фотосинтез являются типами автотрофного питания, когда организм выделяет органические вещества из неорганических.
    • Энергия такой реакции запасается в аденозинтрифосфорной кислоте (сокращено АТФ) и впоследствии используется для синтеза органических веществ.
    Хемосинтез – уникальный процесс питания бактерий

    Отличие фотосинтеза от хемосинтеза:

    • У них разный источник энергии, и как следствие разные окислительно-восстановительных реакции. При хемосинтезе первичным источником энергии является не солнечный свет, а химические реакции по окислению определенных веществ.
    • Хемосинтез характерен исключительно для бактерий и арей.
    • При хемосинтезе клетки бактерий не содержат хлорофилла, при фотосинтезе наоборот – содержат.
    • Источником углерода для синтеза органики при хемосинтезе может быть не только лишь углекислый газ, но и окись углерода (СО), муравьиная кислота, уксусная кислота, метанол и карбонаты.

    Энергия хемосинтеза

    Свою энергию бактерии хемосинтетики получают благодаря окислению водорода, марганца, железа, серы, аммиака и т. д. В зависимости от окисляемого субстрата упомянутые нами выше бактерии и получили свои названия: железобактерии, серобактерии, метанобразующие археи, нитрифицирующие бактерии, ну и так далее.

    Значение хемосинтеза в природе

    Хемосинтез – уникальный процесс питания бактерий

    Хемотрофы – организмы, получающие жизненную энергию благодаря хемосинтезу, играют важную роль в круговороте веществ, особенно азота, в частности они поддерживают плодородность почв. Также благодаря деятельности бактерий-хемосинтетиков в природных условиях накапливаются большие запасы руды и селитры.

    Реакции хемосинтеза

    Теперь давайте более детально разберем существующие реакции хемосинтеза, все они отличаются в зависимости от бактерий-хемосинтетиков.

    Железобактерии

    К ним относятся нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы. Обитают они в пресных и морских водоемах. Благодаря реакции хемосинтеза образуют отложения железных руд путем окисления двухвалентного железа в трехвалентное.

    Хемосинтез – уникальный процесс питания бактерий

    4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

    Читайте также:  Прививка акдс импортная пентаксим или инфанрикс что лучше

    Помимо энергии в этой реакции образуется углекислый газ. Также помимо бактерий окисляющих железо, есть бактерии окисляющие марганец.

    Серобактерии

    Иное их название – тиобактерии, представляют собой весьма большую группу микроорганизмов. Как это следует из их названия, эти бактерии получают энергию путем окисления соединений с восстановленной серой.

    2S + 3O2 + 2H2O → 2H2SO4 + E

    Хемосинтез – уникальный процесс питания бактерий

    Полученная в результате реакции сера может, как накапливаться в самих бактериях, так и выделятся в окружающую среду в виде хлопьев.

    Нитрифицирующие бактерии

    Эти бактерии, обитающие в земле и воде, свою энергию получают за счет аммиака и азотистой кислоты, именно они играют очень важную роль в кругообороте азота.

    2NH3 + 3O2 → HNO2 + 2H2O + E

    Азотистая кислота, полученная при такой реакции, образует в земле соли и нитраты, способствующие ее плодородию.

    Хемосинтез – уникальный процесс питания бактерий

    Хемосинтез, видео

    И в завершение образовательное видео о сути хемосинтеза.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected]

    Эта статья доступна на английском языке – Chemosynthesis.

    Фотосинтез и хемосинтез

    В процессе фотосинтеза автотрофы используют энергию солнца, чтобы преобразовать воду из почвы и углекислый газ из воздуха в глюкозу. Последняя предоставляет энергию и используется для создания целлюлозы (которая незаменима для строительства клеточных мембран), например, растениями, морскими водорослями, фитопланктоном и некоторыми бактериями. Насекомоядные растения используют фотосинтез для выработки энергии, но зависят и от других организмов для получения таких питательных веществ, как азот, калий и фосфор. Следовательно, эти растения также считаются автотрофами.

    Хемотрофы используют энергию, образующуюся в результате химических реакций, для производства пищи. Чаще всего в реакцию вступает сероводород (метан с кислородом). Углекислый газ является главным источником углерода для хемотрофов. Примером могут быть бактерии, найденные в действующих вулканах, термальных источниках, гейзерах и на морском дне. Эти организмы выживают в самых экстремальных условиях.

    Способы питания. Автотрофное и гетеротрофное питание. Хемосинтез — урок. Биология, Общие биологические закономерности (9–класс)

    Все живые существа нуждаются в пище и питательных веществах. По способу получения необходимых для жизнедеятельности органических веществ все клетки (и живые организмы) подразделяют на две большие группы: автотрофы и гетеротрофы.

    Автотрофные организмы

    Автотрофные организмы способны самостоятельно синтезировать необходимые им органические вещества, получая из окружающей среды только источник углерода (CO2), воду (H2O) и минеральные соли.

    Автотрофы подразделяются на две группы: фотосинтетики (фототрофы) и хемосинтетики (хемотрофы).

    Для фотосинтетиков источником энергии для реакций биосинтеза служит солнечный свет. К фототрофам относятся клетки зелёных растений, содержащие хлорофилл, и бактерии, способные к фотосинтезу (например, цианобактерии).

    Хемосинтетики используют для синтеза органических веществ энергию, высвобождающуюся в ходе химических превращений неорганических соединений.

    Хемосинтез — образование органических соединений из неорганических за счёт энергии окислительно-восстановительных реакций соединений азота, железа, серы.

    Хемосинтетики — единственные организмы на Земле, не зависящие от энергии солнечного света. К ним относятся некоторые виды бактерий:

    • железобактерии  окисляют двухвалентное железо до трёхвалентного:

              Fe2+\(→\)Fe3+ \(+\) E;

    • серобактерии  окисляют сероводород до молекулярной серы или до солей серной кислоты:

              H2S+O2=2H2O+2S+E,

              H2S+O2=2H2SO4+E;

    • нитрифицирующие бактерии  окисляют аммиак до азотистой и азотной кислот, которые, взаимодействуя с почвенными минералами, образуют нитриты и нитраты:

              NH3\(→\)HNO2\(→\)HNO3 \(+\) E.

    Выделяющаяся в реакциях окисления неорганических соединений энергия переводится в энергию макроэргических связей АТФ  и только затем тратится на синтез органических соединений.

    Способы питания. Автотрофное и гетеротрофное питание. Хемосинтез — урок. Биология, Общие биологические закономерности (9–класс)

    Роль хемосинтетиков велика, так как они являются непременным звеном природных круговоротов важнейших элементов: серы, азота, железа и др. Они разрушают горные породы, участвуют в образовании полезных ископаемых, применяются в очистке сточных вод (серобактерии). Нитрифицирующие бактерии обогащают почву нитритами и нитратами, в форме которых растениями усваивается азот.

    Читайте также:  Анализ кала на кишечную группу, как сдавать на посев (мазок)

    Гетеротрофные организмы

    Гетеротрофные организмы не могут самостоятельно синтезировать органические вещества из неорганических соединений и нуждаются в их постоянном поглощении извне. Питаясь пищей растительного и животного происхождения, они используют энергию, запасённую в органических соединениях, и строят из полученных веществ собственные белки, липиды, углеводы и другие биополимеры.

    К гетеротрофам относятся животные, грибы и многие бактерии.

    В зависимости от того, откуда гетеротрофные организмы получают питательные вещества, их делят на группы: сапрофиты, паразиты, голозои.

    Сапрофиты (сапротрофы) питаются мёртвыми органическими остатками (бактерии гниения, брожения, молочнокислые бактерии, многие грибы).

    Паразиты существуют только на живых организмах, нанося им вред (болезнетворные бактерии, грибы-паразиты растений, животных и человека; паразитические животные и растения).

    Третья группа гетеротрофов — голозои. Голозойное питание включает три этапа: поедание, переваривание и всасывание переваренных веществ. Оно чаще наблюдается у многоклеточных животных, имеющих пищеварительную систему. Голозойно питающихся животных можно подразделить на плотоядных, растительноядных и всеядных.

    Миксотрофные организмы

    Существуют также организмы, способные использовать как автотрофный, так и гетеротрофный способы питания. Такие организмы называют миксотрофы. Это, например, эвглена зелёная, которая на свету является фототрофом, а в темноте — гетеротрофом.

    Некоторые растения, например венерина мухоловка или росянка, способны пополнять нехватку азота ловлей и перевариванием насекомых.

    Другие растения частично перешли к паразитическому образу жизни и могут получать органические вещества из организма хозяина при помощи особых видоизменений корней (омела, петров крест, повилика).

    Полученные авто- или гетеротрофным путём органические вещества не могут непосредственно обеспечивать энергией процессы, происходящие в клетке. За счёт энергии химических связей этих веществ обязательно синтезируется универсальный источник энергии — АТФ.

    Источники:

    Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

    Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

    Хемосинтез

    Хемосинтез — древнейший тип автотрофного питания, который в процессе эволюции мог появиться раньше фотосинтеза. В отличие от фотосинтеза при хемосинтезе первичным источником энергии является не солнечный свет, а химические реакции окисления веществ, обычно неорганических.

    Хемосинтез наблюдается только у ряда прокариот. Многие хемосинтетики обитают в недоступных для других организмов местах: на огромных глубинах, в бескислородных условиях.

    Хемосинтез в каком-то смысле уникальное явление. Хемосинтезирующие организмы не зависят от энергии солнечного света ни напрямую как растения, ни косвенно как животные. Исключением являются бактерии, окисляющие аммиак, т. к. последний выделяется в результате гниения органики.

    Сходство хемосинтеза с фотосинтезом:

    • автотрофное питание,
    • энергия запасается в АТФ и потом используется для синтеза органических веществ.

    Отличия хемосинтеза:

    • источник энергии – различные окислительно-восстановительные химические реакции,
    • характерен только для ряда бактерий и архей;
    • клетки не содержат хлорофилла;
    • в качестве источника углерода для синтеза органики используется не только CO2, но также окись углерода (CO), муравьиная кислота (HCOOH), метанол (CH3OH), уксусная кислота (CH3COOH), карбонаты.

    Хемосинтетики получают энергию при окислении серы, сероводорода, водорода, железа, марганца, аммиака, нитрита и др. Как видно, используются неорганические вещества.

    В зависимости от окисляемого субстрата для получения энергии хемосинтетиков делят на группы: железобактерии, серобактерии, метанообразующие археи, нитрифицирующие бактерии и др.

    У аэробных хемосинтезирующих организмов акцептором электронов и водорода служит кислород, т. е. он выступает в роли окислителя.

    Хемотрофы играют важную роль в круговороте веществ, особенно азота, поддерживают плодородие почв.

    Представители железобактерий: нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы.

    Распространены в пресных и морских водоемах. Образуют отложения железных руд.

    Водный сток с железобактериями

    Окисляют двухвалентное железо до трехвалентного:

    4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

    Кроме энергии в этой реакции получается углекислый газ, который связывается в органические вещества.

    Читайте также:  Комплексная терапия вируса герпеса медицинскими препаратами

    Кроме бактерий окисляющих железо, существуют бактерии окисляющие марганец.

    Серобактерии

    Серобактерии также называются тиобактериями. Это достаточно разнообразная группа микроорганизмов. Есть представители получающие энергию как от солнца (фототрофы), так и путем окисления соединений с восстановленной серой – пурпурные и зеленые серобактерии, некоторые цианеи.

    2S + 3O2 + 2H2O → 2H2SO4 + E

    В анаэробных условиях в качестве акцептора водорода используют нитрат.

    Бесцветные серобактерии (беггиаты, тиотриксы, ахроматиумы, макромонасы, акваспириллюмы) обитают в содержащих сероводород водоемах. Они 100%-ые хемосинтетики. Окисляют сероводород:

    Хемосинтез

    2H2S + O2 → 2H2O + 2S + E

    Образующаяся в результате реакции сера накапливается в бактериях или выделяется в окружающую среду в виде хлопьев. Если сероводорода недостаточно, что эта сера может также окисляться (до серной кислоты, см. реакцию выше).

    Вместо сероводорода могут также окисляться сульфиды и др.

    Нитрифицирующие бактерии

    Типичные представители: азотобактер, нитрозомонас, нитрозоспира.

    Нитрифицирующие бактерии обитают в почве и водоемах. Энергию получают за счет окисления аммиака и азотистой кислоты, поэтому играют важную роль в круговороте азота.

    Аммиак образуется при гниении белков. Окисление бактериями аммиака приводит к образованию азотистой кислоты:

    2NH3 + 3O2 → HNO2 + 2H2O + E

    Другая группа бактерий окисляет азотистую кислоту до азотной:

    2HNO2 + O2 → 2HNO3 + E

    Две реакции не равноценны по выделению энернгии. Если при окислении аммиака выделяется более 600 кДж, то при окислении азотистой кислоты – только около 150 кДж.

    Азотная кислота в почве образует соли — нитраты, которые обеспечивают плодородие почвы.

    Водородные бактерии

    В основном распространены в почве. Окисляют водород, образующийся при анаэробном разложении органики микроорганизмами.

    2H2 + O2 → 2H2O + E

    Данная реакция катализируется ферментом гидрогеназой.

    Метанобразующие археи и бактерии

    Типичные представители: метанобактерии, метаносарцины, метанококки.

    Археи строгие анаэробы, обитают в бескислородной среде.

    Хемосинтез идет без участия кислорода. Чаще всего восстанавливают углекислый газ до метана водородом:

    CO2 + 4H2 → CH4 + 2H2O + E

    plustilino © 2019. All Rights Reserved

    Тип питания фототрофов

    Восполнение запасов энергии и нужных веществ клеточными организмами осуществляется с питанием. Все разновидности питания, которые сегодня известны науке, встречаются у бактерий. Процесс обмена веществ у живых организмов имеет практически один и тот же механизм, но у микроорганизмов имеется ряд особенностей в этом плане.

    Это интересно: как определить валентность по таблице Менделеева?

    Световая энергия преобразуется фототрофными микроорганизмами в фотосинтетические пигменты, которые могут быть:

    • хлорофиллами. При фотосинтезе происходит выделение кислорода. Этот процесс называется кислородный или оксигенный фотосинтез. Такими процессами характеризуются цианобактерии.
    • бактериохлорофиллами. Пигменты, относящиеся к хлорофиллам, не выделяют кислород во время фотосинтеза. Используемый пигмент реагирует на свет с волной другой длины. Он не может поглощаться ни растениями, ни цианобактериями, ни водорослями. Аноксигенный, или бескислородный, фотосинтез характерен для пурпурных, зеленых и гелиобактерий.
    • бактериородопсинами. Такой пигмент фотосинтеза встречается только у галобактерий, который содержится в пурпурных мембранах.

    Есть теория, что фотосинтез может осуществляться и с другим источником света. В месте подводного термального источника обнаружили серобактерии, которые обитают на глубине ниже 2 км, куда солнечный свет не может проникнуть. Есть предположение, что происходит поглощение световых волн из термального источника бактериохлорофиллом, содержащимся в серобактериях.

    Главное биологическое назначение фототрофов — это обеспечение всего живого кислородом. Некоторые виды обеспечивают круговорот азота, серы и других веществ в природе. Как видно, микроорганизмы играют большую роль в этом огромном мире.

    Что такое гниение

    Суть в том, что сложнейшая по своему составу материя распадается на более простые элементы. Современное представление ученых об этом процессе, превращающем органические соединения в неорганические, можно описать следующими действиями:

    • Бактерии гниения обладают метаболизмом, что разрывает химическим путем связи молекул органики, содержащих азот. Процесс питания происходит в форме захвата молекул белка и аминокислот.
    • Ферменты, что выработаны микроорганизмами, в процессе расщепления высвобождают аммиак, амины, сероводород из молекул белка.
    • Продукты, поступающие в организм бактерии гниения, используются для получения энергии.
    Что такое гниение